Matplotlib boxplot не показывает ожидаемый результат

Почему мой боксплот не показывает ожидаемый результат? Я могу видеть только круги, и вместо этого я хочу видеть традиционный коробочный сюжет. Как я могу это исправить? введите описание изображения здесь

import matplotlib as plt
collection_0 = [826, 58, 305, 161, 341, 25, 50, 1303, 1241, 406, 4318, 14330, 62, 45, 17, 809, 2560, 2901, 1988, 1755, 2584, 1924, 218, 13, 140, 156, 591, 109, 17, 563, 242, 23, 156, 179, 85, 59, 78, 55, 57, 27, 33, 62, 499, 685, 1418, 70, 155, 388, 205, 62, 22, 358, 688, 273, 27, 107, 85, 856, 375, 144, 476, 161, 33, 1748, 315, 106, 347, 85, 43, 157, 770, 616, 220, 13, 170, 156, 200, 165, 1211, 138, 163, 61, 78, 140, 318, 1296, 14, 386, 19, 918, 193, 381, 178, 106, 91, 109, 261, 72, 436, 194, 176, 237, 28, 201, 36, 166, 1928, 358, 611, 58, 82, 59, 37, 269, 223, 836, 45, 425, 166, 26, 63, 387, 270, 180, 331, 342, 629, 610, 46, 67, 151, 57, 188, 70, 96, 41, 92, 79, 26, 56, 188, 466, 214, 45, 39, 161, 70, 134, 370, 70, 401, 85, 113, 224, 60, 508, 58, 71, 49, 56, 400, 1308, 22, 124, 74, 63, 56, 84, 144, 26, 29, 33, 20, 241, 25, 17, 25, 45, 37, 100, 93, 175, 27, 308, 134, 28, 203, 195, 161, 168, 364, 102, 66, 53, 57, 195, 30, 55, 108, 110, 75, 42, 531, 25, 17, 156, 24, 29, 303, 77, 36, 184, 67, 15, 92, 124, 206, 51, 87, 83, 23, 134, 64, 50, 99, 451, 144, 265, 228, 96, 357, 39, 14, 91, 46, 110, 75, 18, 30, 93, 61, 31, 203, 226, 92, 162, 415, 30, 48, 86, 51, 79, 130, 181, 17, 64, 57, 168, 153, 72, 57, 34, 234, 18, 30, 72, 98, 44, 114, 58, 23, 54, 24, 126, 37, 28, 73, 8, 38, 86, 214, 46, 34, 63, 79, 72, 111, 37, 499, 382, 76, 589, 72, 139, 108, 301, 63, 158, 17, 12, 103, 337, 65, 17, 56, 32, 27, 14, 224, 33, 40, 55, 60, 76, 18, 24, 56, 99, 135, 23, 50, 102, 74, 114, 29, 24, 50, 84, 33, 316, 52, 38, 112, 61, 10, 22, 17, 71, 22, 99, 51, 84, 34, 32, 18, 91, 240, 29, 141, 121, 67, 40, 303, 78, 86, 48, 149, 102, 57, 42, 88, 137, 133, 89, 88, 70, 31, 24, 73, 7, 53, 46, 156, 17, 133, 85, 103, 70, 26, 145, 26, 112, 81, 37, 27, 98, 14, 84, 26, 31, 43, 42, 19, 38, 32, 35, 92, 168, 53, 175, 25, 30, 48, 84, 98, 57, 62, 32, 38, 75, 11, 33, 29, 38, 48, 52, 244, 303, 135, 10, 52, 12, 43, 78, 34, 50, 51, 49, 68, 68, 53, 18, 50, 64, 17, 27, 17, 21, 12, 46, 29, 35, 31, 93, 93, 25, 20, 18, 18, 43, 61, 29, 16, 40, 28, 26, 15, 30, 41, 67, 75, 53, 64, 105, 15, 35, 41, 22, 54, 20, 38, 31, 21, 105, 23, 37, 12, 29, 38, 16, 16, 21, 57, 66, 83, 44, 43, 14, 28, 48, 51, 17, 21, 16, 7, 34, 50, 23, 14, 18, 23, 32, 91, 29, 31, 23, 9, 14, 17, 15, 43, 16, 17, 20, 11, 16, 7, 13, 11, 49, 42, 13, 23, 18, 28, 38, 23, 10, 32, 9, 34, 16, 18, 9, 23, 16, 12, 65, 31, 37, 16, 9, 34, 8, 12, 22, 55, 17, 30, 13, 25, 27, 14, 7, 78, 19, 11, 41, 54, 22, 27, 8, 18, 22, 6, 29, 16, 35, 27, 8, 10, 7, 51, 9, 23, 12, 9, 6, 15, 16, 8, 7, 14, 12, 10, 14, 17, 10, 13, 18, 8, 7, 9, 10, 10]
collection_1 = [1353, 25, 2430, 1995, 1209, 1291, 564, 68, 1184, 81, 132, 140, 1463, 258, 143, 338, 63, 38, 144, 534, 130, 2742, 392, 157, 301, 193, 620, 2303, 2269, 84, 1464, 148, 593, 191, 102, 1194, 211, 11, 2498, 359, 808, 552, 96, 334, 238, 46, 1771, 536, 160, 195, 318, 193, 684, 280, 249, 19, 235, 15, 144, 2030, 104, 619, 523, 106, 902, 31, 13, 55, 9, 21, 68, 51, 45, 92, 41, 432, 436, 137, 81, 57, 210, 254, 34, 28, 301, 72, 134, 409, 30, 53, 112, 106, 267, 33, 57, 35, 18, 143, 52, 45, 36, 183, 43, 66, 40, 100, 194, 139, 18, 280, 262, 62, 331, 196, 604, 56, 43, 181, 82, 171, 57, 22, 34, 52, 46, 260, 125, 50, 46, 23, 69, 83, 28, 219, 94, 32, 82, 31, 200, 20, 78, 725, 225, 107, 58, 59, 31, 44, 18, 136, 180, 74, 20, 44, 28, 90, 69, 48, 47, 50, 74, 18, 50, 20, 75, 127, 19, 80, 23, 163, 30, 103, 27, 10, 37, 37, 44, 41, 46, 49, 48, 55, 14, 19, 42, 79, 50, 45, 36, 15, 45, 128, 122, 46, 38, 21, 21, 81, 24, 12, 15, 53, 9, 26, 43, 23, 16, 79, 9, 45, 146, 58, 17, 30, 13, 8, 17, 24, 56, 6, 12, 17, 9, 15, 11, 13, 13, 12, 14, 21, 10, 8, 15, 8, 28, 8, 11, 24, 9, 13, 30, 14, 15, 7, 9, 25, 7, 8, 10, 5, 7, 7, 6, 7, 6, 7, 8, 9]
data_to_plot = [collection_0, collection_1]
box = plt.boxplot(data_to_plot,patch_artist=True, labels=["Contracting", "Expanding"])
colors = ['red', 'green']
for patch, color in zip(box['boxes'], colors):
    patch.set_facecolor(color)
plt.ylabel("Unique adopters")
plt.show()

Всего 1 ответ


Ваши данные варьируются в пределах 4 порядков, при этом большинство данных лежат ближе к 1000. Среднее значение ваших данных составляет около 170, поэтому весь блок-график выглядит сжатым из-за огромного значения выброса, превышающего 14000. Вы можете увидеть это через гистограмму

plt.hist(collection_0);

введите описание изображения здесь

Вы должны попытаться использовать масштаб журнала для ожидаемой визуализации

plt.yscale('log')

введите описание изображения здесь


Есть идеи?

10000